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Instability of rectangular jets 
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The instability of rectangular jets is investigated using a vortex-sheet model. It is 
shown that such jets support four linearly independent families of instability waves. 
Within each family there are infinitely many modes. A way to classify these modes 
according to the characteristics of their mode shapes or eigenfunctions is proposed. 
The stability equation for jets of this geometry is non-separable so that the 
traditional methods of analysis are not applicable. It is demonstrated that the 
boundary element method can be used to calculate the dispersion relations and 
eigenfunctions of these instability wave modes. The method is robust and efficient. 
A parametric study of the instability wave characteristics has been carried out. A 
sample of the numerical results is reported here. It is found that the first and third 
modes of each instability wave family are corner modes. The pressure fluctuations 
associated with these instability waves are localized near the corners of the jet. The 
second mode, however, is a centre mode with maximum fluctuations concentrated in 
the central portion of the jet flow. The centre mode has the largest spatial growth 
rate. It is anticipated that as the instability waves propagate downstream the centre 
mode would emerge as the dominant instability of the jet. 

1. Introduction 
Recently there has been a growing interest in the use of non-axisymmetric jets in 

high-speed propulsive systems. These jets offer possibilities of thrust vectoring, 
mixing enhancement and noise reduction (see Wlezien & Kibens 1988; Seiner, 
Ponton & Manning 1986; Krothapalli et al. 1989; Gutmark et al. 1988; Gutmark, 
Schadow & Bicker 1990; Schadow et al. 1989; Ahuja et al. 1990). For high-speed 
circular jets it is known that the large turbulence structures/instability waves of the 
jet flow play a key role in the mixing and noise radiation processes (see for example 
Tam & Burton 1984). It is generally believed that this is also true for non-circular 
jets. The excited large turbulence structures in mixing layers and jets have been 
modelled quite successfully using instability wave solutions by Tam & Morris (1985), 
Gaster, Kit & Wygnanski (1985) and Petersen & Samet (1988). Prior work by Tam 
& Chen (1979) and Plaschko (1981,1983) showed that even the broadband spectrum 
of turbulence in mixing layers and jets can be modelled adequately by the dominant 
instability wave solutions of the flow. 

The stability of elliptic jets has been studied by Crighton (1973) using a vortex- 
sheet jet model. Morris (1988) re-examined the problem and extended the analysis to  
jets with more realistic finite-thickness shear layers. An analytic representation of 
the mean velocity was chosen so that separable solutions of the stability equation in 
elliptic cylindrical coordinates could be found. In this sense the analysis of the 
stability of elliptic jets is quite similar to that of the circular jets. For non- 
axisymmetric jets of other geometry, such as rectangular jets, the stability equation 
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is non-separable. Thus the traditional methods for finding instability wave solutions 
are no longer applicable. 

Koshigoe and coworkers (Koshigoe & Tubis 1986, 1987 ; Koshigoe, Gutmark & 
Schadow 1988) considered the instability of jets of fairly general shape. They 
proposed a Green’s function technique and a generalized shooting method for solving 
this class of problems, To validate their methods they used them to analyse the 
stability of elliptic and triangular jets. For elliptic jets, their results were in 
agreement with those of Morris (1988). More recently Baty & Morris (1989) studied 
the stability of jets of arbitrary geometry. In  their approach they first map the jet 
cross-section into a standard computational domain. Then a hybrid spectral method 
is used to solve the eigenvalue problem. They applied their method to incompressible 
elliptic and rectangular jets and provided some preliminary numerical results. The 
effectiveness of the method, however, appears to require further testing and study. 

The objective of this work is to investigate the instability of rectangular jets. It 
appears that a systematic study of the instability wave characteristics of these jets 
has not been done before. Here a vortex-sheet jet model, similar to that used by 
Crighton (1973) and Morris (1988) in their elliptic jet instability studies, will be 
employed. Because of the vortex-sheet approximation, the results presented are 
applicable only to regions of the jet immediately downstream of the nozzle exit where 
the shear layer is thin. However, most current numerical methods for solving 
instability of jets of realistic velocity profile require a starting solution to begin the 
iterative process. The present vortex-sheet model solution could provide a starting 
value for calculations further downstream. 

The instability waves of a rectangular jet can be grouped into four families. 
Classification of the modes within each family is carried out. The results of a 
parametric study of the instability wave characteristics is reported in $5 of this 
paper. Based on these results some general properties of these instability waves are 
found. It turns out that the first and the third modes of each instability wave family 
are corner modes. The fluctuations associated with these modes are highly localized 
near the corners of the jet. The second mode is a centre mode. Its fluctuations are 
concentraied in the central portion of the jet flow adjacent to the shear layer. Within 
the range of the present parametric study, the centre mode has the largest spatial 
growth rate regardless of Mach number and aspect ratio. The possible development 
of the different instability wave modes in the streamwise direction is discussed at the 
end of the paper. 

To solve the non-separable stability equation, the boundary element method (see, 
for example, Beskos 1987; Brebbia, Telles & Wrobel 1984) is utilized. In 
implementing the boundary element method the eigenvalue problem is first recast as 
a pair of integral equations. These equations are then discretized to form matrix 
equations which are solved numerically. Numerical convergence of the calculated 
eigenvalues will be demonstrated. Experience gained in applying this method to 
circular and rectangular jets indicates that the method is robust and well-suited for 
solving this class of problems. 

2. The eigenvalue problem 
Consider a jet of velocity uj bounded by a vortex sheet B as shown in figure 1 .  It 

will be assumed that the cross-section D of the jet is symmetric with respect to  the 
y- and z-axes. The flow is in the x-direction. Jets with cross-sections of this kind 
include the circular, the elliptic and the rectangular jets. Starting from the linearized 
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FIGURE 1. Cross-section of a vortex-sheet jet which is symmetric with respect to 
the y- and z- axe^. 

continuity, momentum and energy equations of a compressible inviscid fluid it is 
straightforward to find that the pressures associated with small-amplitude 
disturbances superimposed on the mean flow inside and outside the jet, pl and p 2 ,  are 
governed by the convective wave equation and the wave equation respectively : 

($+uj&ypl-afV2pl = 0 inside D ,  

(2.2) -- aiVap2 = 0 outside D ,  
a t 2  

where a, and aj are the speeds of sound outside and inside the jet. Let y be the 
displacement of the vortex sheet in the direction A, normal to the bounding curve B. 
The dynamic and kinematic boundary conditions at  the vortex sheet B are 

Pl = P22 

where p, and pj are the fluid densities outside and inside the jet, respectively. On the 
left-hand sides of (2.4) and (2.5) the derivatives are in the direction 6. 

Instability wave solutions of the above equations and boundary conditions in the 
form 

where o and k are the angular frequency and axial wavenumber, will now be sought. 
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FIGURE 2. The symmetry and antisymmetry of the four families of instabilities of a rectangular 
jet: (a) family 1 ,  ( b )  family 2, (c) family 3, ( d )  family 4. 

Substitution of (2.6) into (2.1) to (2 .5 )  and eliminating [ leads tc; the following 
eigenvalue problem : 

Vi$, = 0 inside D, (2.7) 

V~$,+Ai@, = 0 outside D, (2.8) 

and on the vortex sheet B 
$1 = $29 (2.9) 

(2.10) 

where A, = [ ( o ~ - u ~ k ) ~ / a j ” - k ~ ] f  and A, = [ w 2 / a ~ - k 2 ] ~ .  The branch cuts for A, and A, 
are choseu so that 0 < argh,, arg A, < n. Vi is the two-dimensional Laplacian, i.e. 

Equations (2.7)-(2.10) are homogeneous. In general, the only solution is the trivial 
solution. However, for a given w there are special values k ,  usually complex, for 
which non-trivial solutions are possible. They are the eigenvalues and the associated 
eigensolutions. Of special interest are the spatially growing instability waves given 
by solutions with negative ki (the imaginary part of k ) .  

Now the y- and z-axes are axes of symmetry of domain D and boundary B.  It is 
easy to verify that the above eigenvalue problem (2.7)-(2.10) is invariant to the 
following four group transformations : 

( a )  y-f-y, xi -z ,  j$+jil, and y+y, z - f - z ,  @ i + $ i ;  i =  1,2 ,  

( h )  y-f-y, zi-z, $i+j&, and y+y, z+-z,  $i+-$i;  i =  1,2 ,  

(c )  y-f-y, z+z, and y ~ y ,  z - t - 2 ,  fib+$(; i = 1,2, 

( d )  y+-y, z + z ,  $ii+-j j i ,  and y+y, z+-z ,  $ii - f -$i;  i =  1,2 .  
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The symmetry and antisymmetry of the above transformations are illustrated in 
figure 2. Thus there are four linearly independent families of eigensolutions each 
satisfying one of the above group transformations. 

3. Integral formulation 
In  this section the differential-equation eigenvalue problem of (2.7) to (2.10) is 

reformulated into integral equations. This is done by means of the Green’s theorem. 

3.1. Boundary integrals 
Let y = (y, x) and y’ = (y’, 2’) be coordinate vectors and Vi be the two-dimensional 
Laplacian in the (y, 2)-plane. It is well known that the two-dimensional fundamental 
solution G,(y, y’)  satisfying the equation 

Vg GI +A: G, = - S(JJ -f) (3.1) 

and the boundedness or outgoing wave condition as lyJ + co is given by 

G,(Y,Y’) = a=r’(h,lY - Y ’ h  (3.2) 

where H r ) (  ) is the zeroth-order Hankel function of the first kind. 
Let V be the cylindrical volume of unit height generated by translating domain D 

of figure 1 in the x-direction over a unit distance. By applying Green’s theorem, using 
volume P and functions g l ( y )  of eigenvalue problem (2.7)-(2.10) and G1Cy,y’), the 
integral relation 

can easily be established. In  principle there are two additional terms on the right- 
hand side of (3.3) involving integrals over the flat surfaces of the cylindrical volume 
V.  However, since the normal derivative terms of the integrand are identically equal 
t o  zero on these surfaces, the integrands and the integrals must themselves be zero. 

Let s be the arclength of the bounding curve B measured from the positive 
intersection point on the y-axis as shown in figure 1. The total length of the bounding 
curve will be taken to be 4s. Note that the integrands of the integrals of (3.3) are 
independent of 2‘. Thus by integrating over x’ the equation may be simplified to 

a@, 
$,(s’) ( y ,  a’)] ds’. (3.4) 

In (3.4) $,(s‘) and GI@, 6’) are the values of $,(y’) and G,(y, y’) on the boundary curve 
B. Now the two-dimensional Laplacian of 1;, and G, can be eliminated by means of 
(2.7) and (3.1). It is straightforward to find that upon integrating over the delta 
function the left-hand side of (3.4) is equal to $ l ( y )  if y is an interior point of D, and 
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FIGURE 3. Exterior domain E and boundaries. 

&(s) if y is a boundary point with an arclength coordinate s. In this way the 
boundary integral equation 

is derived. Now enclose the domain D of figure 1 by an external curve B, with a cut 
formed by curves B, and B, as shown in figure 3. In the exterior region E the pressure 
perturbation is 3,. Let a,(y, y')  be the corresponding fundamental solution satisfying 

and the boundedness or outgoing wave condition as Iql --f 00. It is clear that 
C2Cy,y') = $iH~)(A,Iy-y'l). Green's theorem is applied using the functions 6,  and 
C, and the cylindrical volume of unit height formed by translating the domain E in 
the x-direction over a unit distance. Upon carrying out steps similar to the above, 
it is straightforward to obtain, after letting B,+ 00 and B, +Bz, the following 
boundary integral equation : 

Note that the two surface integrals over B, x 1 and B, x 1 cancel each other because 
the normal derivative terms of the integrands are exactly opposite in sign. Finally, 
by means of boundary conditions (2.9) and (2.10), (3.6) may be rewritten as 

Equations (3.5) and (3.7) provide a pair of integral equations for #,(s) and a#,,(s)/an. 
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3.2. Integral equations for the four families of instability waves 
It was pointed out in 92 that because of the symmetries of the problem, there are four 
independent families of eigensolutions. On the boundary B the symmetry and 
antisymmetry conditions of these solutions can be represented mathematically by 
the following equations : 

(3.8) 
where g l = i - l ,  a , = f l ,  r3=~,cr2 a n d O < s < s .  It iseasytosee that thefour 
families of eigenfunctions can be obtained by setting the values of v1 and u2 
appropriately; there are four possible combinations of plus and minus one. 

The boundary integral equations (3.5) and (3.7) may now be rewritten so as to 
require integration only over the first quadrant. This is accomplished by using (3.8) 
and a change of integration variable. The simplified integral equations are 

gl(s)  = ~ { [ G l ( s , ~ ’ ) + ~ , G , j a ,  28-s’)+a3G,(s,2~+s’) 

$,(s) = a1$,(2S-s) = V3$,(28+S) = .,$,(48-S), 

For convenience, the notation 

Po w2 

(3.10) 

(3.11) 

Glf’(s,s’) G , ( ~ , S ’ ) + ~ ~ G , ( ~ , ~ ~ - ~ ’ ) + . ~ G , ( S , ~ ~ + S ’ ) + . ~ C ~ ( S , ~ S - S ’ ) ;  i = 1,2  
(3.12) 

will be adopted. In the simplified notation, the pair of boundary integral equations 
of the instability wave problem may be written as 

(3.13) 

(3.14) 

4. Discretization by boundary elements 
Integral equations (3.13) and (3.14) will be discretized by the method of constant 

boundary elements (see for example Beskos 1987). The boundary curve B is 
approximated by Wstraightline segments, r, (i = 1,2, . . . , N), over each of which fil 
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and aj,/an are taken to be constant. The constant value may be regarded as that at 
the midpoint of each line segment. The locations of these midpoints are denoted 
by si (i = 1,2 ,  ...,a). The equality of the integral equations will be enforced a t  
s = si (i = 1,2, ...,iV), i.e. in the first quadrant. Upon introducing the notation 

and similar notation for pi:), .If) and qf), integral equations (3.13) and (3.14) may be 
cast into the following matrix form : 

[isij + vljf’lp - by)] g = 0, (4.2) 

F[-&,+i${’]p-@$’]g = 0. (4.3) 

The vectors p and g have elements p ,  and gi (i = 1,2, ..., N ) .  
In  general, the matrix equations (4.2) and (4.3) have the trivial solution as the only 

solution. In  order for a non-trivial solution to  exist, the determinant of the combined 
coefficient matrix must be equal to zero. This leads to the instability wave dispersion 
relation 

(4.4) 

For a given angular frequency w the roots of (4.4), the eigenvalues b, are generally 
complex. I n  this work they are determined computationally. Once an eigenvalue k 
is found, the eigenvector can be calculated by solving (4.2) and (4.3) in a 
straightforward manner. 

5. Numerical results 
As soon as the jet fluid leaves the nozzle exit, viscosity and mixing will smooth out 

the sharp corners of the cross-section of the jet. To take this fact into account the 
rectangular jets considered here are assumed to have slightly rounded corners. 
Numerical experiments using different sizes of round-off ellipses (up to & of the 
corresponding side width of the jet) have been carried out. It is found that both the 
growth rate and wavelength of the instability waves are not sensitive to the size of 
the corner. For computational purposes the corners are rounded off by ellipses with 
semi-axes equal to  &, of the corresponding side width of the jet. This is illustrated in 
figure 4. 

To compute the complex wavenumber (eigenvalue) of an instability wave, the first 
step is to calculate the elements of the determinant in (4.4). I n  the Appendix it is 
shown that the integrals involved may be transformed into a form with non-singular 
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FIGURE 4. Cross-section of rectangular vortex-sheet jets used in computation. 

N 

10 
20 
30 
40 
50 
60 
70 
80 

Exact 

Re kRj 

1 .Om623 624 7 
1.024045 835 8 
1.024127291 8 
1.0241562628 
1.024 1698365 
1.024 177287 9 
1.024181 811 8 
1.024 1847870 
1.024 195 1770 

Im kRj 

-0.545 105 1850 
-0.5451471909 
-0.545 1557723 
-0.545 158 978 7 
-0.545 1605732 
-0.545 1615024 
-0.5451620909 
-0.5451625088 
-0.5451645956 

Absolute error 

0.0005476318 
0.0001503520 
0.000068 456 2 
0.0000393175 
0.000025657 8 
0.000018 1546 
O.OOO013 597 9 
0.000010597 5 

TABLE 1. Circular jet, family 1, mode 1, Strouhal number = 0.3, Mach number = 1.5, 
5 Gaussian nodes per element 

N 

10 
20 
30 
40 
50 
70 
90 

Exact 

Re kRj 

1.023 6440325 
1.024053 8330 
1.024 132 036 5 
1.024 159 480 6 
1.024 172 261 5 
1.024 183 460 3 
1.024188080 1 
1.024 195 177 0 

Im lcR, 

- 0.545 1264324 
-0.545 1555890 
- 0.545 160 826 9 
-0.5451624513 
- 0.545 163 2120 
-0.545 163 897 3 
-0.5451641749 
-0,5451645956 

Absolute error 

0.000 552 464 2 
0.000 141 6307 
0.0000632529 
0.000 035 760 7 
0.000022 957 2 
0.0000117375 
0.000007 1094 

TABLE 2. Circular jet, family 1, mode 1, Strouhal number = 0.3, Mach number = 1.5, 
20 Gaussian nodes per element 

integrands. In this work, the integrals are computed by Gaussian quadratures using 
five or more Gaussian points. Once the computer program for calculating the 
elements and the value of the determinant in (4.4) is completed, a two-step method 
is used to determine the eigenvalues. First, an initial search for the roots of (4.4) using 
the grid-search technique described by Tam & Hu (1989) is carried out. This initial 
search is necessary in order to provide good starting values for eigenvalue refinement. 
In  performing the grid search the complex kh-plane is divided into smaller 
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subregions by a rectangular grid. The value of the dispersion function D ( w , k )  is 
calculated at each grid point. A plotting subroutine is then called to execute a two- 
dimensional interpolation of this set of values and construct the two families of 
curves Re (0) = 0 and Im (0) = 0. The intersections of these curves provide a first 
estimate of the locations of the zeros of D. 

The second step is to refine the eigenvalues. In  this study this is done by applying 
Newton's iteration method. Central to the Newton's iteration method is an algorithm 
to calculate the derivative aD/ak. Since D is a large-order determinant the most 
efficient way of computing this derivative is by the Trace theorem of Davidenko 
(1960). The Trace theorem has been used effectively for instability wave calculations 
by Bridges & Morris (1984). If k(") is the mth iterate then Newton's method together 
with the Trace theorem leads to the recurrence formula 

where M is the matrix of (4.4). In this investigation the iteration is allowed to 
continue until the following stopping criteria are met : 

(i) Ik(m+l) - k(m)l  < 10-41k(m)l, 
(ii) ]D(m+l)l < 1 0 - ~  lfirst element of M("+l)I ]cofactorl. 

5.1. Circular j e ts  

To demonstrate the accuracy and suitability of the boundary element method for 
instability calculation, results of the circular jet instability wave calculated by this 
method will be compared with the exact solutions. In  circular jets the four families 
of eigensolutions have the following angular dependence : 

Family 1 : cos (2n8), 

Family 2 : 

Family 3 : 

Family 4 : sin (2nO), 

sin (2n+ 1) 6,  

cos (2n+ 1) 8, 

where n = 0,1,2,  ... . 
Table 1 shows the wavenumber of the family 1, mode 1 instability wave of a Mach 

1.5 circular jet at  Strouhal number (fDj/uj) 0.3 calculated by the boundary element 
method where Dj is the jet diameter. N is the number of boundary elements used. By 
comparing with the exact eigenvalue it appears that three-figure accuracy is 
obtained using as few as 10 elements. As expected, the accuracy of the computed 
results improves as the number of elements used increases. From this table it is clear 
that there is size convergence as N-too  in the computed eigenvalue. In this 
demonstration five Gaussian points are used in evaluating the integrals of the 
elements of the determinant. Table 2 shows the same calculation except that the 
number of Gaussian points is increased to 20. Judging from the results of the two 
tables it becomes apparent that if three-figure accuracy is required then integration 
employing five Gaussian points is sufficient. 

Figure 5 (a ,  b)  shows the calculated dispersion relations, kR, versus oRj/uj, of the 
first three modes of the family 1 instability waves of a Mach 1.5 jet for dimensionless 
frequency wRj/uj up to 3.0 (B, is the radius of the jet). The real and imaginary parts 
of the exact wavenumber are also plotted on these figures. In the boundary element 
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- ki Rj 

wR,lu, 

FIGURE 5. Dispersion relation for family 1 of a vortex-sheet, Mach 1.5, circular jet. Exact solution : 
0,  mode 1 ;  +, mode 2;  0,  mode 3. Boundary element solution: -, mode 1 ;  -----, mode 2;  
. . . . ., mode 3. (a) krRj versus wBj/uj, (b )  -kiR, versus wR,/uj. 

calculation 15 elements are used. Clearly there is good agreement with the exact 
results over the entire range of frequencies. 

Figure 6 gives the spatial distribution of the family 2, mode 2 pressure 
eigenfunction, Jpl, in the first quadrant computed by the boundary element method. 
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0 0.4 0.8 1.2 1.6 2.0 

YlRj 
FIQURE 6. Distribution of Ipl in the first quadrant of a Mach 1.5, circular jet for family 2, mode 2 
(sin30 dependence) with wR,/uj = 0 . 3 ~  and kR, = 0.98884.8452i: -----, exact solution; -, 
boundary element solution. 

Eight boundary elements are used. Also shown, as dashed lines, is the exact 
eigenfunction distribution. It is evident that the difference between the two 
distributions is quite minor. This is true both inside and outside the jet. Based on 
these and other similar results (not discussed here because of space limitations) it is 
believed that the boundary element method can be trusted to provide fairly accurate 
calculations of jet instability wave characteristics even when as few as 10 elements 
per quadrant are employed. 

5.2. Modal classiJicution for rectangular jets 
Each family of instability waves of a rectangular jet consists of infinitely many 
modes. Unlike a circular jet there does not seem to be a natural way to classify these 
wave modes. The modal classification scheme adopted in this study is by no means 
unique. However, it does have the advantage that the mode numbers assigned, 
regardless of family, appear to correlate with some of the characteristics of the 
instability waves. This point will become apparent later. 

Consider the special case of a square jet. Extensive computation indicates that the 
propagation characteristics and eigenfunction distribution of an instability wave 
mode can change appreciably with Strouhal number, wh/uj .  However, at  low 
Strouhal number, say wh/uj = 0.1, the instability waves of a square jet resemble 
those of a circular jet. For instance, the first mode of the first family of instability 
waves of a circular jet has a pressure eigenfunction distribution, lpl, uniform over the 
entire thin shear layer. For the higher-order modes the spatial distribution of Ipl 
oscillates as a function of the arclength 8 .  The mode number is exactly equal to the 
number of maxima in the first quadrant. It turns out that the eigenfunctions of the 
square jet also exhibit very similar characteristics. An example is shown in figure 7. 
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0 0.25 0.50 0.75 1 .oo 
s/4s 

FIGURE 7. Distribution of Ipl along the thin shear layer of a Mach 1.5, square jet when 
wh/uj = 0.1: -, mode 1; ---, mode 2 ;  . . . . ., mode 3. (a )  Family 1, ( b )  family 2, ( c )  family 3, ( d )  
family 4. 

In  this figure the eigenfunctions are for a cold (same total temperature inside and 
outside the jet), 1.5 Mach number jet, but the Mach number is unimportant. The 
number of maxima remains the same for other Mach number jets. In the following 
the mode number of an instability wave of a square jet is decided by the number of 
maxima of Ipl along the shear layer in the first quadrant at  wh/uj = 0.1. For waves 
a t  other Strouhal numbers the mode number is obtained by analytic continuation of 
this special solution in frequency space. Computationally the continuation is carried 
out by incremental changes in wh/uj .  The eigenvalue refinement is done by the 
Newton's iteration process. Similarly for rectangular jets, the instability waves are 
obtained by analytic continuation of those of the square jet regarding the aspect 
ratio as a continuous parameter. The mode number is kept the same in the analytic 
continuation process. In  this way the mode numbers of the instability waves of 
rectangular jets are established. 

5.3. Dispersion relations, eigenfunctions and some prominent characteristics of the 
instability waves of rectangular jets 

Extensive computations of the dispersion relations and eigenfunctions of the 
instability waves of rectangular jets a t  subsonic and supersonic Mach numbers have 
been carried out. Here a typical sample of the computed results and the highlights 
of some of the general characteristics of the instability waves will be reported. 
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whlu,  
FIGURE 8(a, b ) .  For caption see facing page. 

Figure 8(a)  shows the dispersion relations for the first three modes of the family 
1 instability waves of a cold, Mach 1.5, rectangular jet with aspect ratio 2 (39 
boundary elements were used in the calculation). Similar dispersion relations for the 
other three families are given in figure 8(b-d).  These are typical dispersion relations 
a t  supersonic Mach numbers. One distinctive feature of these dispersion relations is 
that the real part of the wavenumber, k,, is almost a linear function of frequency w.  



Instability of rectangular jets 439 

0 1 .o 2.0 3.0 

W h l %  
FIGURE 8. Dispersion relation of a Mach 1.5, aspect ratio 2, rectangular jet. kr h versus wh/zcj : -, 
mode 1 ;  ---, mode 2 ;  . . . . .  , mode 3. -kih versus w h / u j :  0-0, mode 1 ;  (3-0, mode 2 ;  
0. .O, mode 3. (a) Family 1, (a) family 2, (c) family 3, ( d )  family 4. 

This is true even for jets with larger aspect ratios. Figure 9(a-d) shows the dispersion 
relations for a similar jet but with an aspect ratio of four. As is evident, again the k,  
versus w relation for each wave mode can be closely approximated by a straight line. 
What this means is that the instability waves are non-dispersive. This non- 
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0 1 .o 2.0 3.0 

6Jhl4 
FIGURE 9 (u, b ) .  For caption see facing page. 

dispersiveness characteristic of the instability waves of rectangular jets is not 
restricted to supersonic Mach numbers. Figure 10 (a-d) shows the dispersion 
relations ofa Mach 0.8, subsonic jet with aspect ratio four. The E ,  versus w curves are 
also quite linear. The present results indicate that regardless of Mach number and 
aspect ratio (the present computational study covers the range of Mach number up 
to 2.0 and aspect ratio up to 4) the instability waves of a rectangular jet with a thin 
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FIGURE 9. Dispersion relation of a Mach 1.5, aspect ratio 4, rectangular jet. k, h versus uh/u, : -, 
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mixing layer are essentially non-dispersive. A closer examination of all the computed 
dispersion relations reveals that regardless of wave family, the first and third modes 
have phase velocities just slightly less than the jet speed. The second mode, however, 
has lower phase velocity (generally in the range of 0 . 8 ~ ~  to 0 . 9 ~ ~ ) .  
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Another interesting observation of the dispersion relations is that, independent of 
wave family and aspect ratio, the growth rates of the instability waves at a given jet 
Mach number, Strouhal number and mode number are comparable. This general 
statement can easily be verified by examining all the - lc, versus o relations of figures 
8, 9 and 10. Furthermore, this same set of dispersion relations supports the rather 
unexpected conclusion that regardless of wave family, Mach number and aspect 
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FIGURE 10. Dispersion relation of a Mach 0.8, aspect ratio 4, rectangular jet. Ic,h versus wh/u,: 
-, mode 1 ; ---, mode 2 ;  . . . . ., mode 3. -k,hversusoh/u,: 0-0, mode 1 ; O--O, mode 2 ;  
0 .  .o, mode 3. (a) Family 1, (6) family 2, (c) family 3, ( d )  family 4. 

ratio, for a given Strouhal number, the second instability wave mode always has the 
highest spatial growth rate. This is a useful and important conclusion. It implies that 
the second mode could be the dominant mode. That is, this mode is most likely to 
be observed. 

15-2 



444 C. K.  W.  Tam and A .  T.  Thies 

s/4s 

FIGURE 11. Distribution of Ipl along the thin shear layer of a Mach 1.5, aspect ratio 2, rectangular 
jet when oh/uj = 1.0: -, mode 1; ---, mode 2;  * * * ,  mode 3. (a) Family 1, ( b )  family 2 ,  (c) 
family 3, ( d )  family 4. 

There appears no obvious explanation of why the second mode should always have 
the largest growth rate irrespective of the aspect ratio of the jet. To find a plausible 
explanation an examination of the (pressure) eigenfunction distributions has been 
carried out. Figure 11 shows the distribution of Ipl along the thin shear layer of a 
Mach 1.5, rectangular jet of aspect ratio 2 at a Strouhal number oh/uj = 1 .O. Notice 
that the corners of the jet are located at 8/(4q = 0.08,0.42,0.58,0.92. It can be seen 
that the maximum values of the pressure fluctuations of the mode 1 and mode 3 
instability waves are concentrated near the four corners of the jet, whereas those of 
the second mode are largest near the middle or centre part of the jet. In  this sense 
modes 1 and 3 are corner modes while mode 2 is a centre mode. 

Figure 12 provides another illustration of the difference in eigenfunction 
distribution among the first three modes. The case considered is that of a Mach 1.5, 
supersonic jet with aspect ratio 4 and a Strouhal number oh/uj = 3.0. It is easily seen 
that there is a distinct difference between the locations of the peaks in the spatial 
distribution of lpl of mode 2 and the other two modes. Figure 13(a-c) provides 
contour maps of the spatial distributions of Ipl in the first quadrant for a Mach 1.5, 
aspect ratio 2 jet at  wh/uj = 1.5. Figures 13(a) and 13(c) show clearly that the 
pressure fluctuations associated with mode 1 and mode 3 (family 1 )  instability waves 
are highly localized near the corners of the jet. This is especially true for mode 1. 
Figure 13(b) indicates that the maximum pressure fluctuations of the mode 2 
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FIGURE 12. Distribution of IpI along the thin shear layer of a Mach 1.5, aspect ratio 4, rectangular 
jet when wh/u, = 3.0: -, mode 1; ---, mode 2; . . . . ., mode 3. (a) Family 1, ( b )  family 2, (c) 
family 3, (d) family 4. 

instability waves are concentrated near the shear layer in the middle of the jet. Now 
the fluctuations of the corner modes involve only a limited portion of the jet fluid 
mainly near the four corners of the jet. On the other hand, the centre mode (mode 
2) involves a large part of the jet flow. Perhaps it is simply because of this that mode 
2 always has a larger growth rate than the other two modes. 

6.  Discussion 
In this study the instability of rectangular jets has been analysed using a vortex- 

sheet jet model. Because of this thin-shear-layer approximation, strictly speaking, 
the results are only applicable to the region of the jet immediately downstream of the 
nozzle exit. However, it appears, based on what has been found, that it is possible 
to infer qualitatively the different roles that the different instability wave modes 
play beyond the initial region of the jet. 

It is known that flow instability is a key mechanism for promoting mixing in jets 
and other free shear flows. For rectangular jets the highly localized corner instability 
modes would quickly induce significant mixing and thus rounding off of the corners 
of the jets. In  other words, these modes tend to assist the jet flow to evolve into a 
more circular cross-section in the downstream direction. Although an analysis of 
such jets with finite-thickness mixing layers is needed to provide a definitive 
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FIGURE 13. Spatial distribution of the eigenfunction, lpl, of a Mach 1.5, aspect ratio 2, rectangular 
jet (26 boundary elements) for family 1 with wh/u, = 1.5. (a) mode 1, kh = 1.6313-0.8395i; ( b )  mode 
2, kh = 1.7811-1.5427i; (c) mode 3, kh = 1.5374-1.15863. 
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statement, it is reasonable to expect that the corner modes would become damped 
downstream once the corners of the jet start disappearing. From this standpoint the 
corner modes are short-lived. The centre modes (mode 2), on the other hand, are 
supported by the entire jet flow. They would be able to persist downstream even 
when the jet becomes more circular in shape. Therefore, it is justifiable to assume 
that the centre modes would eventually develop into the dominant instability of the 
jet. If one's interest is in mixing and jet noise radiation, they would be the instability 
wave modes to study and measure. 

This work was supported by NASA Langley Research Center Grant NAG 1-421. 

Appendix. Integral with singular integrand 
The only integral with a singular integrand among all the elements of determinant 

(4.4) is in pi,. Let the length of the boundary element be As and g be the distance 
measured from the centre of the element. It is easy to find 

$H~l)(Al& d l  = ti Hi1)(hg) dy. rz pii = 
-As12 

Now change the variable of integration to 6 which is related to T,I by 7 = +(g+ l)z As. 
This gives 

which has a regular integrand. 
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